
Audit Report
ARORA

January 2023

Type BEP20
Network BSC
Address 0x305bbd18f9a3b55047740843889521722dab1fde
Audited by © cyberscope



ARORA Token Audit 1

Table of Contents
Table of Contents 1

Review 2

Audit Updates 2

Source Files 2

Analysis 3

Diagnostics 4

RSML - Redundant SafeMath Library 5

Description 5

Recommendation 5

L04 - Conformance to Solidity Naming Conventions 6

Description 6

Recommendation 6

L05 - Unused State Variable 8

Description 8

Recommendation 8

L07 - Missing Events Arithmetic 9

Description 9

Recommendation 9

L09 - Dead Code Elimination 10

Description 10

Recommendation 10

L19 - Stable Compiler Version 12

Description 12

Recommendation 12

Functions Analysis 13

Inheritance Graph 19

Flow Graph 20

Summary 21

Disclaimer 22

About Cyberscope 23



ARORA Token Audit 2

Review

Contract Name MarketingTax

Compiler Version v0.8.15+commit.e14f2714

Optimization 200 runs

Explorer https://bscscan.com/address/0x305bbd18f9a3b5504774084388952172
2dab1fde

Address 0x305bbd18f9a3b55047740843889521722dab1fde

Network BSC

Symbol AROR

Decimals 9

Total Supply 100,000,000

Ownership Renounced

Audit Updates

Initial Audit 08 Jan 2023

Source Files

Filename SHA256

MarketingTax.sol 165f819e055bef0c44b55f01bd5ff4be9ae
781403043c7bdb60ba0c829521673

https://bscscan.com/address/0x305bbd18f9a3b55047740843889521722dab1fde
https://bscscan.com/address/0x305bbd18f9a3b55047740843889521722dab1fde


ARORA Token Audit 3

Analysis

⬤ Critical ⬤ Medium ⬤ Minor / Informative ⬤ Pass

Severity Code Description Status

⬤ ST Stops Transactions Passed

⬤ OCTD Transfers Contract's Tokens Passed

⬤ OTUT Transfers User's Tokens Passed

⬤ ELFM Exceeds Fees Limit Passed

⬤ ULTW Transfers Liquidity to Team Wallet Passed

⬤ MT Mints Tokens Passed

⬤ BT Burns Tokens Passed

⬤ BC Blacklists Addresses Passed



ARORA Token Audit 4

Diagnostics

⬤ Critical ⬤ Medium ⬤ Minor / Informative

Severity Code Description Status

⬤ RSML Redundant SafeMath Library Unresolved

⬤ L04 Conformance to Solidity Naming Conventions Unresolved

⬤ L05 Unused State Variable Unresolved

⬤ L07 Missing Events Arithmetic Unresolved

⬤ L09 Dead Code Elimination Unresolved

⬤ L19 Stable Compiler Version Unresolved



ARORA Token Audit 5

RSML - Redundant SafeMath Library

Criticality Minor / Informative

Location MarketingTax.sol#L5

Status Unresolved

Description

SafeMath is a popular Solidity library that provides a set of functions for performing
common arithmetic operations in a way that is resistant to integer overflows and
underflows.

Starting with Solidity versions that are greater than or equal to 0.8.0, the arithmetic
operations revert on underflow and overflow. As a result, the native functionality of
the Solidity operations replaces the SafeMath library. Hence, the usage of the
SafeMath library adds complexity, overhead and increases unnecessarily the gas
consumption.

library SafeMath {

}

Recommendation

The team is advised to remove the SafeMath library. Since the version of the
contract is greater than 0.8.0 then the pure Solidity arithmetic operations produce
the same result.

If the previous functionality is required, then the contract could exploit the
unchecked { ... } statement.

Read more about the breaking change on
https://docs.soliditylang.org/en/v0.8.16/080-breaking-changes.html#solidity-v0-8-0
-breaking-changes.

https://docs.soliditylang.org/en/v0.8.16/080-breaking-changes.html#solidity-v0-8-0-breaking-changes
https://docs.soliditylang.org/en/v0.8.16/080-breaking-changes.html#solidity-v0-8-0-breaking-changes


ARORA Token Audit 6

L04 - Conformance to Solidity Naming
Conventions

Criticality Minor / Informative

Location MarketingTax.sol#L715,717,748,794,1451,1452,1453,1469,1470,1471,1487,1488,1
489,1506,1507,1508

Status Unresolved

Description

The Solidity style guide is a set of guidelines for writing clean and consistent Solidity
code. Adhering to a style guide can help improve the readability and maintainability
of the Solidity code, making it easier for others to understand and work with.

The followings are a few key points from the Solidity style guide:

1. Use camelCase for function and variable names, with the first letter in

lowercase (e.g., myVariable, updateCounter).

2. Use PascalCase for contract, struct, and enum names, with the first letter in

uppercase (e.g., MyContract, UserStruct, ErrorEnum).

3. Use uppercase for constant variables and enums (e.g., MAX_VALUE,

ERROR_CODE).

4. Use indentation to improve readability and structure.

5. Use spaces between operators and after commas.

6. Use comments to explain the purpose and behavior of the code.

7. Keep lines short (around 120 characters) to improve readability.

function DOMAIN_SEPARATOR() external view returns (bytes32);

function PERMIT_TYPEHASH() external pure returns (bytes32);

function MINIMUM_LIQUIDITY() external pure returns (uint256);

function WETH() external pure returns (address);

uint256 _wholeNumber

uint256 _firstNumberAfterDecimal

uint256 _secondNumberAfterDecimal

Recommendation



ARORA Token Audit 7

By following the Solidity naming convention guidelines, the codebase increased the
readability, maintainability, and makes it easier to work with.

Find more information on the Solidity documentation
https://docs.soliditylang.org/en/v0.8.17/style-guide.html#naming-convention.

https://docs.soliditylang.org/en/v0.8.17/style-guide.html#naming-conventions


ARORA Token Audit 8

L05 - Unused State Variable

Criticality Minor / Informative

Location MarketingTax.sol#L1106

Status Unresolved

Description

An unused state variable is a state variable that is declared in the contract, but is
never used in any of the contract's functions. This can happen if the state variable
was originally intended to be used, but was later removed or never used.

Unused state variables can create clutter in the contract and make it more difficult
to understand and maintain. They can also increase the size of the contract and the
cost of deploying and interacting with it.

int256 private constant MAX_INT256 = ~(int256(1) << 255)

Recommendation

To avoid creating unused state variables, it's important to carefully consider the
state variables that are needed for the contract's functionality, and to remove any
that are no longer needed. This can help improve the clarity and efficiency of the
contract.



ARORA Token Audit 9

L07 - Missing Events Arithmetic

Criticality Minor / Informative

Location MarketingTax.sol#L1460,1478,1496,1515

Status Unresolved

Description

Events are a way to record and log information about changes or actions that occur
within a contract. They are often used to notify external parties or clients about
events that have occurred within the contract, such as the transfer of tokens or the
completion of a task.

It's important to carefully design and implement the events in a contract, and to
ensure that all required events are included. It's also a good idea to test the contract
to ensure that all events are being properly triggered and logged.

centiSellTax =

_wholeNumber *

100 +

_firstNumberAfterDecimal *

10 +

_secondNumberAfterDecimal

centiBuyTax =

_wholeNumber *

100 +

_firstNumberAfterDecimal *

10 +

_secondNumberAfterDecimal

...

Recommendation

By including all required events in the contract and thoroughly testing the contract's
functionality, the contract ensures that it performs as intended and does not have
any missing events that could cause issues with its arithmetic.



ARORA Token Audit 10

L09 - Dead Code Elimination

Criticality Minor / Informative

Location MarketingTax.sol#L593,1004,1012,1152,1157,1168

Status Unresolved

Description

In Solidity, dead code is code that is written in the contract, but is never executed or
reached during normal contract execution. Dead code can occur for a variety of
reasons, such as:

● Conditional statements that are always false.

● Functions that are never called.

● Unreachable code (e.g., code that follows a return statement).

Dead code can make a contract more difficult to understand and maintain, and can
also increase the size of the contract and the cost of deploying and interacting with
it.

function _burn(address account, uint256 amount) internal virtual {

require(account != address(0), "ERC20: burn from the zero address");

_beforeTokenTransfer(account, address(0), amount);

_balances[account] = _balances[account].sub(

amount,

"ERC20: burn amount exceeds balance"

);

_totalSupply = _totalSupply.sub(amount);

emit Transfer(account, address(0), amount);

}

...

Recommendation



ARORA Token Audit 11

To avoid creating dead code, it's important to carefully consider the logic and flow
of the contract and to remove any code that is not needed or that is never executed.
This can help improve the clarity and efficiency of the contract.



ARORA Token Audit 12

L19 - Stable Compiler Version

Criticality Minor / Informative

Location MarketingTax.sol#L3

Status Unresolved

Description

The ^ symbol indicates that any version of Solidity that is compatible with the
specified version (i.e., any version that is a higher minor or patch version) can be
used to compile the contract. The version lock is a mechanism that allows the
author to specify a minimum version of the Solidity compiler that must be used to
compile the contract code. This is useful because it ensures that the contract will be
compiled using a version of the compiler that is known to be compatible with the
code.

pragma solidity ^0.8.15;

Recommendation

The team is advised to lock the pragma to ensure the stability of the codebase. The
locked pragma version ensures that the contract will not be deployed with an
unexpected version. An unexpected version may produce vulnerabilities and
undiscovered bugs. The compiler should be configured to the lowest version that
provides all the required functionality for the codebase. As a result, the project will
be compiled in a well-tested LTS (Long Term Support) environment.



ARORA Token Audit 13

Functions Analysis

Contract Type Bases

Function Name Visibility Mutability Modifiers

SafeMath Library

add Internal

sub Internal

sub Internal

mul Internal

div Internal

div Internal

mod Internal

mod Internal

Context Implementation

_msgSender Internal

_msgData Internal

IERC20 Interface

totalSupply External -

balanceOf External -

transfer External ✓ -

allowance External -

approve External ✓ -

transferFrom External ✓ -

IERC20Metada
ta

Interface IERC20



ARORA Token Audit 14

name External -

symbol External -

decimals External -

ERC20 Implementation Context,
IERC20,
IERC20Meta
data

Public ✓ -

name Public -

symbol Public -

decimals Public -

totalSupply Public -

balanceOf Public -

transfer Public ✓ -

allowance Public -

approve Public ✓ -

transferFrom Public ✓ -

increaseAllowance Public ✓ -

decreaseAllowance Public ✓ -

_transfer Internal ✓

_mint Internal ✓

_burn Internal ✓

_approve Internal ✓

_beforeTokenTransfer Internal ✓

IUniswapV2Fa
ctory

Interface

feeTo External -

feeToSetter External -

getPair External -

allPairs External -



ARORA Token Audit 15

allPairsLength External -

createPair External ✓ -

setFeeTo External ✓ -

setFeeToSetter External ✓ -

IUniswapV2Pai
r

Interface

name External -

symbol External -

decimals External -

totalSupply External -

balanceOf External -

allowance External -

approve External ✓ -

transfer External ✓ -

transferFrom External ✓ -

DOMAIN_SEPARATOR External -

PERMIT_TYPEHASH External -

nonces External -

permit External ✓ -

MINIMUM_LIQUIDITY External -

factory External -

token0 External -

token1 External -

getReserves External -

price0CumulativeLast External -

price1CumulativeLast External -

kLast External -

mint External ✓ -

burn External ✓ -



ARORA Token Audit 16

swap External ✓ -

skim External ✓ -

sync External ✓ -

initialize External ✓ -

IUniswapV2Ro
uter01

Interface

factory External -

WETH External -

addLiquidity External ✓ -

addLiquidityETH External Payable -

removeLiquidity External ✓ -

removeLiquidityETH External ✓ -

removeLiquidityWithPermit External ✓ -

removeLiquidityETHWithPermit External ✓ -

swapExactTokensForTokens External ✓ -

swapTokensForExactTokens External ✓ -

swapExactETHForTokens External Payable -

swapTokensForExactETH External ✓ -

swapExactTokensForETH External ✓ -

swapETHForExactTokens External Payable -

quote External -

getAmountOut External -

getAmountIn External -

getAmountsOut External -

getAmountsIn External -

IUniswapV2Ro
uter02

Interface IUniswapV2
Router01

removeLiquidityETHSupportingFeeOn
TransferTokens

External ✓ -



ARORA Token Audit 17

removeLiquidityETHWithPermitSuppor
tingFeeOnTransferTokens

External ✓ -

swapExactTokensForTokensSupportin
gFeeOnTransferTokens

External ✓ -

swapExactETHForTokensSupportingF
eeOnTransferTokens

External Payable -

swapExactTokensForETHSupportingF
eeOnTransferTokens

External ✓ -

Ownership Implementation

Public ✓ -

addr Internal

fee Internal

Ownable Implementation Context

Public ✓ -

owner Public -

renounceOwnership Public ✓ onlyOwner

transferOwnership Public ✓ onlyOwner

SafeMathInt Library

mul Internal

div Internal

sub Internal

add Internal

abs Internal

toUint256Safe Internal

SafeMathUint Library

toInt256Safe Internal



ARORA Token Audit 18

DividendPayin
gTokenOptiona
lInterface

Interface

withdrawableDividendOf External -

withdrawnDividendOf External -

accumulativeDividendOf External -

MarketingTax Implementation ERC20,
Ownable,
Ownership

Public Payable ERC20
Ownership

External Payable -

updateUniswapV2Router Public ✓ onlyOwner

excludeFromFees Public ✓ onlyOwner

excludeMultipleAccountsFromFees Public ✓ onlyOwner

setMarketingWallet External ✓ onlyOwner

setAutomatedMarketMakerPair Public ✓ onlyOwner

_setAutomatedMarketMakerPair Private ✓

isExcludedFromFees Public -

_transfer Internal ✓

swapAndSendToFee Private ✓

swapTokensForEth Private ✓

setSellTax Public ✓ onlyOwner

setBuyTax Public ✓ onlyOwner

setMaxWallet External ✓ onlyOwner

setMaxTx External ✓ onlyOwner



ARORA Token Audit 19

Inheritance Graph



ARORA Token Audit 20

Flow Graph



ARORA Token Audit 21

Summary

ARORA is an interesting project that has a friendly and growing
community. The Smart Contract analysis reported no compiler error or
critical issues. The contract has renounced the ownership so it can not
be used in a malicious way to disturb the users’ transactions. The fees
are fixed to 5% on buys and 6% on sales.



ARORA Token Audit 22

Disclaimer
The information provided in this report does not constitute investment, financial or
trading advice and you should not treat any of the document's content as such. This
report may not be transmitted, disclosed, referred to or relied upon by any person
for any purposes nor may copies be delivered to any other person other than the
Company without Cyberscope’s prior written consent. This report is not nor should
be considered an “endorsement” or “disapproval” of any particular project or team.
This report is not nor should be regarded as an indication of the economics or value
of any “product” or “asset” created by any team or project that contracts
Cyberscope to perform a security assessment. This document does not provide any
warranty or guarantee regarding the absolute bug-free nature of the technology
analyzed, nor do they provide any indication of the technologies proprietors'
business, business model or legal compliance. This report should not be used in
any way to make decisions around investment or involvement with any particular
project. This report represents an extensive assessment process intending to help
our customers increase the quality of their code while reducing the high level of risk
presented by cryptographic tokens and blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk
Cyberscope’s position is that each company and individual are responsible for their
own due diligence and continuous security Cyberscope’s goal is to help reduce the
attack vectors and the high level of variance associated with utilizing new and
consistently changing technologies and in no way claims any guarantee of security
or functionality of the technology we agree to analyze. The assessment services
provided by Cyberscope are subject to dependencies and are under continuing
development. You agree that your access and/or use including but not limited to
any services reports and materials will be at your sole risk on an as-is where-is and
as-available basis Cryptographic tokens are emergent technologies and carry with
them high levels of technical risk and uncertainty. The assessment reports could
include false positives false negatives and other unpredictable results. The services
may access and depend upon multiple layers of third parties.



ARORA Token Audit 23

About Cyberscope
Cyberscope is a blockchain cybersecurity company that was founded with the
vision to make web3.0 a safer place for investors and developers. Since its launch,
it has worked with thousands of projects and is estimated to have secured tens of
millions of investors’ funds.

Cyberscope is one of the leading smart contract audit firms in the crypto space and
has built a high-profile network of clients and partners.

The Cyberscope team

https://www.cyberscope.io

https://www.cyberscope.io

